РЕКЛАМА

Марс орбитална мисия (MOM) на ISRO: Нов поглед върху прогнозирането на слънчевата активност

The researchers have studied the turbulence in Sun’s corona using radio signals sent to Earth by the ultra-low-cost март спътник when the Earth and март were in conjunction on the opposite sides of the Sun (the conjunction usually happens once in approximately two years). The radio signals from the спътник had passed through the corona region of Sun at a close distance of 10 Rʘ (1 Rʘ = solar radii = 696,340 km). The frequency residual of the received signal was analyzed to obtain coronal turbulence spectrum. The findings seemed to be consistent with in-situ findings of Parker Solar Probe. This study provided a very low-cost opportunity to study dynamics in coronal region (in absence of a very high cost in-situ solar probe) and a new insight into how investigation of turbulence in solar coronal region using radio signals sent by a март orbiter to Earth can help improve prediction of solar activity which is of great significance for life forms and the civilization on Earth. 

- март Orbiter Mission (MOM) of Indian Space Research Organization (ISRO) беше изстрелян на 5 ноември 2013 г. с планиран живот на мисията от 6 месеца. Той далеч надхвърли живота си и в момента е във фаза на разширена мисия.  

A team of researchers used radio signals from the спътник to study the solar corona when the Earth and март бяха от противоположните страни на Слънцето. По време на периодите на съвпад, които обикновено се случват веднъж на приблизително две години, радиосигналите от орбиталния апарат преминават през слънчевата коронална област толкова близо до 10 Rʘ (1 Rʘ = слънчеви радиуси = 696,340 XNUMX km) хелио-височина от центъра на Слънцето и дава възможност за изследване на слънчевата динамика.  

Слънчевата корона е регионът, където температурата може да достигне няколко милиона градуса по Целзий. Слънчевите ветрове възникват и се ускоряват в този регион и поглъщат междупланетни пространства, които оформят магнитосферата на планетите и влияят на космическото време околоземната среда. Изучаването на това е важен императив1. Наличието на сонда in situ би било идеално, но използването на радиосигнали (предавани от космически кораб и получени на Земята след пътуване през короналната област представляват отлична алтернатива.  

В скорошния документ2 публикувани в Monthly Notices of Royal Astronomical Society, изследователите изследват турбуленцията в слънчевата коронална област по време на период на фаза на спад на слънчевия цикъл и съобщават, че слънчевите ветрове се ускоряват и преходът му от субалфвеничен към супер-алфвеничен поток се случва около 10-15 Rʘ. Те постигат насищане при сравнително по-ниски хелио-височини в сравнение с периода на висока слънчева активност. Между другото, тази констатация изглежда е подкрепена от прякото наблюдение на слънчевата корона от Parker Probe3 , както добре.  

Тъй като слънчевата корона е заредена плазмена среда и има присъща турбулентност, тя въвежда дисперсионни ефекти в параметрите на електромагнитните радиовълни, пътуващи през нея. Турбулентността в короналната среда предизвиква флуктуации в плътността на плазмата, които се регистрират като флуктуации във фазата на радиовълните, излизащи през тази среда. По този начин радиосигналите, получени на наземната станция, съдържат сигнатурата на разпространяващата се среда и се анализират спектрално, за да се получи спектър на турбулентност в средата. Това формира основата на техниката за коронално радио-сондиране, която е била използвана от космическия кораб за изследване на коронални области.  

Доплеровите честотни остатъци, получени от сигнали, се анализират спектрално, за да се получи спектър на коронална турбуленция на хелиоцентрични разстояния, вариращи между 4 и 20 Rʘ. Това е регионът, където слънчевият вятър се ускорява предимно. Промените в режима на турбулентност са добре отразени в стойностите на спектралния индекс на спектъра на временните честотни флуктуации. Наблюдава се, че спектърът на мощността на турбулентност (временен спектър на честотните флуктуации) на по-ниско хелиоцентрично разстояние (<10 Rʘ) се е изгладил при области с по-ниски честоти с по-нисък спектрален индекс, който съответства на областта на ускорение на слънчевия вятър. По-ниските стойности на спектралния индекс по-близо до повърхността на Слънцето означават режим на входяща енергия, при който турбулентността все още е слабо развита. За по-големи хелиоцентрични разстояния (> 10Rʘ) кривата се извива със спектрален индекс близо до 2/3, което е показателно за инерционни режими на развита турбуленция от тип Колмогоров, при която енергията се транспортира чрез каскадно.  

Цялостните характеристики на спектъра на турбулентност зависят от фактори като фазата на цикъла на слънчевата активност, относителното разпространение на слънчевите активни области и короналните дупки. Тази работа, базирана на данни от MOM, отчита прозрението за слабите максимуми на слънчевия цикъл 24, който е записан като особен слънчев цикъл по отношение на общата по-ниска активност в сравнение с други предишни цикли. 

Интересното е, че това проучване демонстрира много евтин начин за изследване и наблюдение на турбуленцията в слънчевата коронална област чрез използване на метод за радиозондиране. Това може да бъде изключително полезно за следене на слънчевата активност, което от своя страна може да бъде от решаващо значение при прогнозирането на всички важни слънчеви времена, особено в близост до Земята.  

***

Литература:  

  1. Прасад У., 2021. Космическо време, смущения на слънчевия вятър и радиоизблици. Научен европеец. Публикувано на 11 февруари 2021 г. Достъпно на http://scientificeuropean.co.uk/sciences/space/space-weather-solar-wind-disturbances-and-radio-bursts/  
  1. Джейн Р., и др 2022. Изследване на динамиката на слънчевата корона по време на фазата след максимума на слънчевия цикъл 24, използвайки радиосигнали в S-обхвата от мисията на орбиталния апарат в Индия на Марс. Месечни известия на Кралското астрономическо дружество, stac056. Получено в оригинален вид на 26 септември 2021 г. Публикувано на 13 януари 2022 г. DOI: https://doi.org/10.1093/mnras/stac056 
  1. J. C. Kasper et al. Слънчевата сонда Parker навлиза в магнитно доминираната слънчева корона. физ. преп. Лет. 127, 255101. Получено на 31 октомври 2021 г. Публикувано на 14 декември 2021 г. DOI: https://doi.org/10.1103/PhysRevLett.127.255101 

***

Умеш Прасад
Умеш Прасад
Научен журналист | Редактор-основател на списание Scientific European

Искам да получавам известия за нови колекции

Да се ​​актуализира с всички най-нови новини, оферти и специални съобщения.

Най-популярни статии

Актуализация в разбирането на неалкохолната мастна чернодробна болест

Проучването описва нов механизъм, участващ в прогресирането на...

MediTrain: Нов софтуер за медитация за подобряване на обхвата на вниманието

Изследването разработи нов софтуер за дигитална медитация...

Мегатозъби акули: Термофизиологията обяснява нейната еволюция и изчезване

Изчезнали гигантски мегатозъби акули са били на върха на...
- Реклама -
94,514Вентилаторикато
47,678последователиСледвай ни
1,772последователиСледвай ни
30АбонатиЗапиши се