РЕКЛАМА

Самолет, задвижван от „йонен вятър“: самолет, който няма движеща се част

Самолетът е проектиран, който няма да зависи от изкопаеми горива или батерия, тъй като няма да има движеща се част

Още от откриването на самолет преди повече от 100 години, всеки летене машина или самолет в небето лети използва движещи се части като витла, реактивен двигател, лопатки на турбина, вентилатори и т.н., които получават енергия от изгаряне на изкопаеми горива или чрез използване на батерия, която може да доведе до подобен ефект.

След продължило почти десетилетие изследване аеронавтите от Масачузетския технологичен институт построиха и летяха за първи път самолет, който няма движещи се части. Методът на задвижване, използван в този самолет, се основава на принципа на електроаеродинамичната тяга и се нарича „йонен вятър“ или йонно задвижване. И така, вместо витла, турбини или реактивни двигатели, използвани в конвенционалните самолети, тази уникална и лека машина се задвижва от „йонен вятър“. „Вятърът“ може да бъде произведен чрез преминаване на силен електрически ток между тънък и дебел електрод (захранван от литиево-йонни батерии), което води до йонизиране на газа, като по този начин произвежда бързо движещи се заредени частици, наречени йони. Йонният вятър или потокът от йони се разбиват в молекулите на въздуха и ги тласкат назад, давайки на самолета тяга да се движи напред. Посоката на вятъра зависи от разположението на електродите.

Технологията за йонно задвижване вече се използва от НАСА in outer space for satellites and spacecrafts. In this scenario since space is vacuum, there is no friction and thus its quite simple to drive a spacecraft to move forward and its speed also gradually builds up. But in the case of aircrafts on Earth it is understood that our на планетата atmosphere is very dense to get ions to drive an aircraft above the ground. This is the first time ion technology has been tried to fly airplanes on our планета. It was challenging. firstly because just enough thrust is needed to keep the machine flying and secondly, the airplane will have to overcome the drag from resistance to air. The air is sent backward which then pushes the airplane forward. The crucial difference with using the same ion technology in space is that a gas needs to be carried by the spacecraft which will be ionized because space is vacuum while an aircraft in Earth’s atmosphere ionizes nitrogen from atmospheric air.

Екипът извърши множество симулации и след това успешно проектира самолет с петметров размах на крилата и тегло от 2.45 килограма. За генериране на електрическо поле набор от електроди бяха прикрепени под крилата на самолета. Те се състоят от положително заредени жици от неръждаема стомана пред отрицателно заредена част от пяна, покрита с алуминий. Тези силно заредени електроди могат да бъдат изключени с дистанционно управление за безопасност.

Самолетът е тестван във физкултурна зала, като е изстрелян с помощта на бънджи. След много неуспешни опити този самолет можеше да се задвижи, за да остане във въздуха. По време на 10 тестови полета самолетът успя да лети до височина от 60 метра минус всякакво тегло на човешки пилот. Авторите се стремят да увеличат ефективността на своя дизайн и да произвеждат повече йонен вятър, като същевременно използват по-малко напрежение. Успехът на такъв дизайн трябва да бъде тестван чрез разширяване на технологията и това може да е трудна задача. Най-голямото предизвикателство би било, ако размерът и теглото на самолета се увеличат и покрият по-голяма площ от крилата му, самолетът ще изисква по-висока и по-силна тяга, за да остане на повърхността. Могат да бъдат изследвани различни технологии, като например батериите да са по-ефективни или може би да се използват слънчеви панели, т.е. да се намерят нови начини за генериране на йони. Този самолет използва конвенционалния дизайн за самолети, но може да е възможно да се изпробва друг дизайн, в който електродите могат да оформят йонизиращата посока или да се концептуализира всеки друг нов дизайн.

Технологията, описана в настоящото проучване, може да бъде идеална за безшумни дронове или обикновени самолети, тъй като използваните в момента дронове са голям източник на шумово замърсяване. В тази нова технология безшумният поток генерира достатъчна тяга в задвижващата система, която може да задвижи самолета през добре поддържан полет. Това е уникално! Такъв самолет няма да изисква изкопаеми горива, за да лети и по този начин няма да има никакви директни замърсяващи емисии. Освен това, в сравнение с летящи машини, които използват витла и т.н., това е безшумно. Новото откритие е публикувано в природа.

***

{Можете да прочетете оригиналната изследователска статия, като щракнете върху връзката DOI, дадена по-долу в списъка с цитирани източници}

Източник (и)

Xu H et al. 2018. Полет на самолет с твърдо задвижване. природата. 563 (7732). https://doi.org/10.1038/s41586-018-0707-9

***

Екип на SCIEU
Екип на SCIEUhttps://www.ScientificEuropean.co.uk
Scientific European® | SCIEU.com | Значителен напредък в науката. Въздействие върху човечеството. Вдъхновяващи умове.

Искам да получавам известия за нови колекции

Да се ​​актуализира с всички най-нови новини, оферти и специални съобщения.

Най-популярни статии

Широката гама от потенциални терапевтични ефекти на Selegiline

Селегилинът е необратим инхибитор на моноаминоксидаза (МАО) В1.

Увреждане на гръбначния мозък (SCI): Използване на биоактивни скелета за възстановяване на функцията

Самосглобени наноструктури, образувани с помощта на супрамолекулни полимери, съдържащи пептидни амфифили (PAs), съдържащи...

Подвариант JN.1: Допълнителният риск за общественото здраве е нисък на глобално ниво

Подвариант JN.1, чиято най-ранна документирана проба е докладвана на 25...
- Реклама -
94,466Вентилаторикато
47,680последователиСледвай ни
1,772последователиСледвай ни
30АбонатиЗапиши се